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| Hypersonic Area Rule

M. D. LADYZHENSKII

In an earlier work! on the hypothesis? that the whole mass of gas is concentrated in an in-
finitely thin layer contiguous to the shock wave, a hypersonic area rule was formulated. Aec-
cording to this rule, when there is a flow past thin blunted nonaxisymmetrical bodies which
have equal quantities of bluntness resistance and the same rules of variation in the direction
of flow of the cross-sectional areas, and of the surface of the shock waves, the rules of pressure
change and consequently the forces of resistance acting on the body as well, coincide, in which
case the surfaces of the shock waves have an axial symmetry.

In the present work the limits of applicability of the results of Ref. 1 are established, and the
hypersonic area rule is made more accurate by means of the introduction of an entropy layer.

1. Determination of the Limits of Applicability
of the Results of Ref. 1

S an example of the application of the hypersonic area

rule,! we construct a body equivalent to a thin round cone,
i.e., one having the same quantity of bluntness resistance as a
cone and the same trend of change in cross-sectional area in
the direction of flow. The cross section of the body is postu-
lated as having the shape of an ellipse, the major semiaxis of
which is equal to the radius of the shock wave, and the area
equal to the area of the cross section of the round cone (Fig.
1). In other words, the eccentricity of the ellipse in each
section has its maximum possible value compatible with the
requirement (condition 3 of Ref. 1) according to which the
body should not go beyond the limits of a volume confined to
the surface of the shock wave.

As was mentioned in the earlier work,! the area rule may
be combined with the similarity law when the flow occurs past
thin blunted bodies,? as a result of which the dimensionless
quantities characterizing the flow are determined, for a fixed
value of the adiabatic index », by two dimensionless param-
eters: the known parameter of similarity when the flow is
past thin blunt bodies K = M7 and the parameter K; =
(m/2¢,8)Y?Li7?, characterizing the influence of the bluntness,
which in its order of magnitude is equal to the square root of
the ratio of the resistance of the body to the resistance of the
bluntness. Here 7 = SY2/L is the small dimensionless
quantity characterizing the thickness of the body; S some
characteristic cross-sectional area of the body; L the length
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of the body; ¢, and S, respectively, are the coefficient of

bluntness resistance and the midships area of the bluntness.
Under the hypothesis that the action of bluntness may be

replaced by the effect of an explosion in the leading point of

- the body with an energy equal to the bluntness resistance, the

shape of the bluntness is nonessential.! In view of this, the
bluntness area is introduced in the expression for &; instead?
of its diameter. Let us assume that the number M~ of un-
perturbed flow equals infinity. Then for a fixed » the di-
mensionless variables will depend on the single parameter K.
In Fig. 2 are shown (for the case of » = 1.4) the relations of
the quantities & (ratio of major to minor semiaxis of the
ellipse) and (X — X,)/X, (the ratio of the resistance of the
body, after the deduction of the bluntness resistance, to the
bluntness resistance) in function Ky = (w/2¢,S)'2L tan? «,
where « is the angle of the half-aperture of the round
cone. The shape of the shock wave was determined from the
solution of the problem of a flow past a thin blunt cone ac-
cording to Ref. 2. The area rule has a significance in use
where X/X, = 1.1, corresponding (see Fig. 2) to K; > 0.1.
For low values of K, the resistance of the body is practically
determined by the magnitude of the bluntness resistance.
For large values of K; the area rule loses its force when &
approaches unity, or more accurately? whenk — 1 ~(z — 1)/
(3 + 1), which takes place approximately when K; = 1.2.
Thus the range of applicability of the area rule falls within
the limits of 0.1 £ K; < 1.2. Here the ellipse in the cross
section of the body may have a fairly elongated shape, dif-
ferent from a circle (18 = k = 1.3). This result may be of
practical interest. However, in view of the fact that the re-
sults of Ref. 1 are obtained under rough assumptions of the
concentration of the whole mass of gas in an infinitely thin
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Fig. 1 1) Shock wave;

2) cross section of spher-

ical body; 3) cross section
of equivalent body.

layer beyond the shock wave, it is necessary to make the area
rule more accurate.

2. Improving the Accuracy of the Area Rule

In the first place, we assume M., = 1, but in contrast to
Ref. 1, we do not impose the necessary condition of M. 7 = 1.
We introduce a cylindrical system of coordinates zL,yL, 6
(the z axis passes through the leading point of the body and
is directed along the flow). We designate as uU.,0U., and
wU.. the components of the velocity in an axial, radial, and
circumferential direction to the axis, respectively: ppoUZe
is the pressure, pp., is the density, and U., is the velocity of
the unperturbed flow directed along the x axis, and p., is its
density. We shall characterize the quantity of bluntness by
the dimensionless diameter of bluntness dL, where d is a small
quantity. We write the equation for the surface of the body
in the form y = 7f(z,0).

We distinguish the entropy layer, i.e., the region occupied
by flow lines that have passed the portion of the surface of
the shock wave which has passed, where the angles of inclina-
tion formed by the surface of the shock wave with the direc-
tion of the unperturbed flow are not small (Fig. 3). We let
the equation of the conditionally introduced boundary of the
entropy layer be y = 6®(z,0), where § is a small quantity.
Starting from some z = z, ~ d, the angles of inclination of
the boundary of the entropy layer with respect to the z axis
will be of the order of .

We next present evaluations of the parameters of flow in an
entropy layer analogous to those presented in another work.3
‘We note also that the influence of the entropy layer on the
distribution of pressure along the thin blunted cone is con-
sidered in Ref. 4.

We assume that at the surface of the entropy layer the re-
lation p ~ d* exists, where « is a positive number to be de-
termined.

As is found further on, the order of the pressure across
the entropy layer is maintained, since for densities, by using
adiabatic conditions, we may write p ~ d**.  We now write
the equation of continuity for the entropy layer. Comparing
the discharge in the entropy layer with the discharge in the jet
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Fig. 3 1) Shock wave; 2) entropy layer; 3) body.

stream of the unperturbed flow through an area equal to the
area of the bluntness midships, we have

d? ~ puc )]

where ¢ is the area occupied by the entropy layer in section
2z = constant (hatched in Fig. 3). Since it follows from the
equation of Bernoulli that in the entropy layer u ~ 1, we
have o ~ d2=(*/%1 Tt is evident that for §, which enters
into the equation of the boundary of the entropy layer, we
obtain the definition

2=8+¢c @

where S is the cross-sectional area of the body. We require
that the area of the body, in its order of magnitude, should
not exceed the area of the entropy layer S < o; then, evi-
dently

52 ~ dla—(@/x)] 3)
Since the usual expression for hypersonic flow p ~ 62 is cor-

rect for the pressure, this yields the equation for the deter-
mination of a:

2x
d% ~ g2— /% =
T ATl

Finally, for the parameters of flow in the entropy layer we
have:

)

p ~ g/ x4+ 1]
§ ~ b/ e+ 1]

p ~ d/Gc + 1]
o ~ qe/ 0+ 1] )

on the condition that = and d are related in order of magnitude
by the expression derived from the condition S ~ ¢

T ~ /e + D) (6)

this relation practically coincides with the condition 7 ~ 4/, d,
which expresses the fact that the resistance of the body is
comparable in order of magnitude to the bluntness resistance.?

We shall evaluate the pressure drop in the entropy layer.
From equations of motion, we have

op _ _ ov Oy 9@)
oy p<“ax+”ay y b @
L/ w o, wow
569——_p<u&v+vby4—ybﬁ)

Consequently (0p/0y) ~ (1/y)(p/0), since all the terms on
the right sides of Eq. (7) are of the same order of smallness.
From this, taking into account (5) and (6) for the pressure
drop in both a radial and a circumferential direction, the fol-
lowing estimate is valid:

Ap ~ d2 ~ 7[20c + D1/x

Thus the pressure in the entropy layer may be considered
constant with a relative error of

Ap/P ~ d/ + D7~ 72/x ®
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which is somewhat greater than the relative error in the theory
of small perturbations of hypersonic flow, which is known to
equal 72

Let us formulate the problem of a flow past (a body—
Transl.). Withz < z,, assume an axisymmetrical nose part of
the body with an axis of symmetry directed along the z axis,
the flow around which has been calculated fully. It follows
from what has been said, inasmuch as the entropy layer can-
not maintain the pressure drop in a circumferential direction,
in the region z > z, at the outer boundary of the layer, the
pressure in the section # = constant should be constant.
For this condition to hold it is sufficient that the surface
bounded by the entropy layer should possess an axial sym-
metry. [Its equation in this case may be written as y =
8Y (k).]

Then the flow outside of the entropy layer, which is axially
syminetrical by the condition where z < z,, retains its axial
symmetry for z > x as well, and consequently the condition

- of constancy of pressure in the circumferential direction at
the outer boundary of the entropy layer will be satisfied.

We now introduce an equation which relates S to o where
2 > o, for which, analogously to Ref. 3, we make use of the
equation of continuity. Let us designate with the subscript

0 the quantities in the plane z,. Differentiating the elemental
jet of the flow in the entropy layer, we write for it an equation
of discharge:

potiolodBedyo = puydfdy )

From the adiabatic and Bernoulli equations, in which terms
of the order of 72 are discarded, we have the following for p
and u:

)"
pm Do

w? w pof D [0 = 1)/x] 1 1
> S — o+ (10
2+K—1P0<Po) st =iz 10

We analyze Eq. (9) for pu and integrate for the whole area of
the entropy layer in the-section z = x, [we take advantage of
the fact that the coordinates of the line of flow chosen, y and
8, satisfy the relations y = y(yo,60), 0 = 6(yo,600)]. On the
right side of the equation we evidently obtain the area o oc-
cupied by the entropy layer in the section xz. When we take
into account the axial symmetry of the boundary of the en-
tropy layer, we have o = m8?Y%(z) —S8. Finally the relation
sought is written:
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pattern—Transl.) of change in the cross-sectional areas of the
remaining parts, then:

a) The flows outside of the entropy layers are axisym-
metrical; the parameters of flow at the corresponding points
of the surface of the shock waves and of the conditionally in-
troduced boundaries of the entropy layers coincide.

b) The pressure in the entropy layers depends solely on
z, and the pattern of the change in pressure is the same for the
bodies in question; because of this the forces of resistance
acting on the body are equal, since the resistance X is ex-
pressed in the form

X = %o+ IpoUst [ S'@p@de (13)

where X, is the resistance of the nose portion of the body.
For this it is assumed that the conditions of Eqgs. (6) and (12)
are satisfied.

The results obtained are generalized without difficulty to
the case of flow with dissociation. Making allowance for
these effects leads only to a change in the form of the func-

tion F (p) in Eq. (11).

3. Comparison of Results

Let us compare the result obtained with the area rule
demonstrated in Ref. 1. The two theorems have in common
the requirement of a coincidence in the laws (or patterns—
Transl.) of change in the cross-sectional area in the direction
of the z axis, as well as the condition according to which the
resistance of the body should not exceed in its order of mag-
nitude the bluntness resistance. The difference from the
formulation of the theorem demonstrated in Sec. 2 consists
of the following:

a) The necessary condition M7 = 1 is not imposed as it
was in Ref. (1).

b) Instead of the requirement of equal quantities of
bluntness resistance,® a stronger limitation is imposed: The
nose parts of equivalent bodies, being axisymmetrical, should
coincide in shape.

¢) Instead of condition (3) of Ref. 1, according to which
the body does not go beyond the volume limits set by the sur-
face of the shock wave, the stronger limitation of Eq. (12) is
imposed, according to which the body should not exceed the
limits of the outer boundary of the entropy layer.

As a result of this, it may be expected that the values of &
found in See. 1, which characterize the difference between the

m0*Y2(x) — F(p) = S(z)

L+ [2/0c = 1)IQ/M2%) — 20/ (x = D](po/p0)

_ B0\~
RN e DII/A2] = 2x/0c — D pulp) (p/po) (= 078 W00 an

The axisymmetrical flow beyond the entropy layer, where
x > %, may be calculated by one of the exact methods, for
example, by the method of characteristic curves. The bound-
ary of the entropy layer will be determined here in the process
of solution from Eq. (11), which plays the part of a boundary
condition, replacing the condition of nonflow. From this it
follows that the flow where z >  is determined fully by the
given law of change in the cross-sectional area of the body
S(z). In this case, one more obvious limitation should be
imposed on the shape of the body: the body should not go
beyond the limits of the “entropy circle” (see Fig. 3), which
may be symbolically written as

ScwdY*(x) (12)

Now it is possible to formulate a more accurate hypersonic
area rule. When a flow occurs past thin blunted bodies hav-
ing axisymmetrical nose parts coinciding at some distance
from the leading point of the body, and the same trend (or

cross section of the body and the cross section of an equiva-
lent body of revolution, are somewhat excessive.
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